Archives for posts with tag: Space

Mars rover Curiosity drove about 70 feet (about 21 meters) on the mission’s 21st Martian day, or sol (Aug. 30, 2012) and then took images with its Navigation Camera that are combined into this scene, which includes the fresh tracks. The view is centered toward the west-northwest.

Tracks from Eastbound Drive on Curiosity’s Sol 22
On Aug. 28, 2012, during the 22nd Martian day, or sol, after landing on Mars, NASA’s Curiosity rover drove about 52 feet (16 meters) eastward, the longest drive of the mission so far. The drive imprinted the wheel tracks visible in this image. The rover’s rear Hazard Avoidance Camera (Hazcam) took the image after the drive. Curiosity’s front and rear Hazcams have fisheye lenses for enabling the rover to see a wide swath of terrain. This image has been processed to straighten the horizon.

 Thirty years ago radioastronomy did not exist. Astronomers gathered their information, as they had for three centuries, through optical telescopes. Methods had of course become much more refined and the instruments had grown enormously since Galileo first poked a small brass tube filled with two glass lenses in the direction of Jupiter and the moon to see what he could see; but telescopes remained effective only in penetrating the optical window of the earth’s atmosphere—that part of the spectrum in the visible region between the ultra violet and the infra red to which our eyes are sensitive.

NASA Jet Propulsion Laboratory.

 The scientists and engineers of NASA’s Curiosity rover mission have selected the first driving destination for their one-ton, six-wheeled mobile Mars laboratory. The target area, named Glenelg, is a natural intersection of three kinds of terrain. The choice was described by Curiosity Principal Investigator John Grotzinger of the California Institute of Technology during a media teleconference on Aug. 17.

“With such a great landing spot in Gale Crater, we literally had every degree of the compass to choose from for our first drive,” Grotzinger said. “We had a bunch of strong contenders. It is the kind of dilemma planetary scientists dream of, but you can only go one place for the first drilling for a rock sample on Mars. That first drilling will be a huge moment in the history of Mars exploration.”

The trek to Glenelg will send the rover 1,300 feet (400 meters) east-southeast of its landing site. One of the three types of terrain intersecting at Glenelg is layered bedrock, which is attractive as the first drilling target.

“We’re about ready to load our new destination into our GPS and head out onto the open road,” Grotzinger said. “Our challenge is there is no GPS on Mars, so we have a roomful of rover-driver engineers providing our turn-by-turn navigation for us.”

Prior to the rover’s trip to Glenelg, the team in charge of Curiosity’s Chemistry and Camera instrument, or ChemCam, is planning to give their mast-mounted, rock-zapping laser and telescope combination a thorough checkout. On Saturday night, Aug. 18, ChemCam is expected to “zap” its first rock in the name of planetary science. It will be the first time such a powerful laser has been used on the surface of another world.